Midterm Exam

Andrew Chin Due: March 21, 2007

Problem 1: Diffie Hellman Key Exchange

a. We would like to show that Alice's key (K_A) is equal to Bob's key (K_B) .

$$K_B = K_A$$

$$X^y \mod p = Y^x \mod p$$

$$(g^x)^y \mod p = (g^y)^x \mod p$$

$$g^{xy} \mod p = g^{yx} \mod p$$

Because xy = yx, $K_A = K_B$.

We also would like to show that Eve is unable to compute the shared key. Here is the information that Eve knows: $p, g, g^x \mod p$, $g^y \mod p$. To compute the key, Eve would need to know both x and y, but she can not compute either x or y given the information she knows. (TODO: expand here)

b. • When p = 13, g = 2:

- When p 10, g 2.					
	x	X			
	0	$2^0 \mod 13$	$=1=1^{2}$		
	1		=2		
	2	$2^2 \mod 13$	$=4=2^2$		
	3	$2^3 \mod 13$			
	4	$2^4 \mod 13$	$=3=4^{2}$		
	5		=6	The probability that V will be a gauge is 6	
	6	$2^6 \mod 13$	$=12=5^{2}$	The probability that X will be a square is $\frac{6}{13}$	
	7		= 11		
	8	$2^8 \mod 13$	$=9=3^{2}$		
	9		=5		
	10	$2^{1}0 \mod 13$	$=10=6^2$		
	11	$2^{1}1 \mod 13$	=7		
	12	$2^{1}2 \mod 13$	=1		

- The probability that Y will be a square is also $\frac{6}{13}$
- $K_A = K_B = X^y \mod p = Y^x \mod p$ will be a square $\frac{6}{13}^{th}$ of the time.
- In general, the probability that $X = g^x$ will be a square is $\frac{p-1}{2p}$. If p is a prime, and $\langle g \rangle = \mathbb{Z}_p^*$, then g^x is a square iff x is even. Because $x \leftarrow \mathbb{Z}_p$ and there are $\frac{p-1}{2}$ even numbers in \mathbb{Z}_p , $\Pr[X \text{ is a square}] = \Pr[x \text{ is even}] = \frac{\frac{p-1}{2}}{|\mathbb{Z}_p|} = \frac{p-1}{p} = \frac{p-1}{2p}$
- The probability that $Y = g^y$ will be a square is the same probability that X will be a square

• Asking when $K_A = K_B$ will be a square is asking 'When is X^y a quadratic residue modulo p?' or:

$$\begin{aligned} ⪻[X^y = a^2 \pmod{13}] \\ &= ⪻[\left(b^2\right)^y = a^2 \pmod{13}|X = b^2] \\ &= ⪻[\left(b^y\right)^2 = a^2 \pmod{13}|X = b^2] \\ &= ⪻[X = b^2] \end{aligned}$$

The probability that he key K_A will be square is the same as the probability that X is square.

c. • If p = 23 and q = 11 and g = 4:

i	4^i			
0	1			
1	4			
2	16			
3	18			
4	3			
5	12			
6	2			
7	8			
8	9			
9	13			
10	6			
11	1			
$ \langle g \rangle = 11 = 0$				
1 10/1				

- In our example where p = 23, and g = 4, X will always be a square.
- When p = 23 and g = 4, Y will always be a square.
- When p = 23 and g = 4, X will always be a square.
- If $g \leftarrow QR_p$, then g is a square (i.e. there exists some a such that $a^2 = g \mod p$). $X = g^x$ for $x \leftarrow \mathbb{Z}_p$. Because g is a square, $X = (a^2)^x = a^{2x} = a^{x^2} = (a^x)^2$. We can see that if g is a square, then X will always be a square.
- The same it true for $Y = g^y$ (because x and y are both chosen from the same distribution). $Y = (a^2)^y = a^{2y} = a^{y^2} = (a^y)^2$. We can see that if g is a square, then Y will always be a square.
- $K_B = X^y \pmod{p}$. Using what we know about X and g, we see that: $K_B = X^y = (g^x)^y = g^{(xy)} = (a^2)^{(xy)} = a^{(2xy)} = (a^{(xy)})^2$. We see that K_B will always be a square if g is a square.
- In general, if $g \leftarrow QR_p$, then $K = K_A = K_B$ will always be in QR_p , which is considerably smaller than the size of \mathbb{Z}_p

Problem 2: ElGamal Encryption

a. We consider an encryption scheme to be secure if there exists an algorithm FakeCiphertext such that for all m, the following two distribution are equivalent:

$$D_{Enc}(m) = \{(PK, SK) \leftarrow GPK(1k); c \leftarrow Enc(PK, m); (c, m, PK)\}$$

and

$$D_{Fake}(m)\{(PK, SK) \leftarrow GPK(1k); \hat{c} \leftarrow FakeCiphertext(PK, |m|); (\hat{c}, m, PK)\}$$

b. For ElGamal encryption, here is a potential FakeCiphertext:

FakeCiphertext, on input (PK, |m|) will: Parse PK into (p, q, g, h)Choose a random $m' \leftarrow QR_p$ Choose a random $r \leftarrow \mathbb{Z}_q$ Calculate $c' = (g^r, h^r m)$ Output c'

- c. To show that this is secure, we want to show that $D_{Enc}(m) \approx D_{Fake}(m)$. Using the DDH assumption: If $D_0 \approx D_1$ then $D_{Enc}(m) \approx D_{Fake}(m)$. We can show this by showing the contrapositive, that is: If $\neg (D_{Enc}(m) \approx D_{Fake}(m))$ then $\neg (D_0 \approx D_1)$
- d. Here is the reduction:

Assume we have \mathcal{A} which can distinguish between D_{Enc} and D_{Fake} successfully with a probability of ϵ . \mathcal{A} will take as inputs (c, m, PK) and will output a 1 if the input is from $D_{Enc}(m)$ and will output a 0 if the input is from $D_{Fake}(m)$. Using \mathcal{A} , we can construct a \mathcal{B} which will be able to distinguish between D_0 and D_1 . On input (p, g, x, y, z), \mathcal{B} will output a 0 if the input is from D_0 and will output a 1 if the input is from D_1 .

e. Here is how we would build \mathcal{B} .

On input (p, g, x, y, z): Using p (which is a safe prime), calculate $q = \frac{p-1}{2}$ Generate PK = (p, q, g, x)Generate c = (y, m, z * m) $b \leftarrow \mathcal{A}(c, m, PK)$

If b = 1, then \mathcal{A} thinks that it was given an input from D_{Enc} , so output 0. If b = 0, then \mathcal{A} thinks that it was given an input from D_{Fake} , so output 1.

f. Assume A's advantage was ϵ . That is:

$$\begin{split} Pr[\mathcal{A} \text{ suceeds}] &= |Pr[(PK, SK) \leftarrow GPK(1^k); c \leftarrow Enc(PK, m); b \leftarrow \mathcal{A}(c, m, PK) : b = 1] - \\ &\quad Pr[(PK, SK) \leftarrow GPK(1^k), c' \leftarrow FakeCiphertext(PK, |m|); b' \leftarrow \mathcal{A}(c', m, PK) : b = 1]| \\ &= \epsilon \end{split}$$

 \dots not finished \dots

Problem 3: Pseudo-Random Generators and One Way Functions

a. G is a PNG iif D_{PR} is indistinguishable from D_{Random} :

$$D_{PR} = \{x \leftarrow \{0, 1\}^k : G(x)\}$$
$$D_{Random} = \{R \leftarrow \{0, 1\}^{2k} : R\}$$

$$|Pr[x' \leftarrow D_{PR}; b \leftarrow \mathcal{A}(x'); b = 0] - Pr[x \leftarrow D_{Random}; b \leftarrow \mathcal{A}(x); b = 0]| = \epsilon$$

b. A function G() is a pseudo-random generator if there exists a probabilistic polynomial time algorithm \mathcal{A} that can't distinguish between random bits and pseudorandom bits. Or: it can only distinguish between them with a probability ϵ which is negligible.

- c. A function $f: \{0,1\}^* \to \{0,1\}^*$ is a one-way function if: $\forall \text{ ppt } \mathcal{A} \exists v() \text{ such that } v() \text{ is negligible and } Pr[x \leftarrow \{0,1\}^*; x' \leftarrow \mathcal{A}(f(x)) : f(x') = f(x)] = v(k)$
- d. A function $f: \{0,1\}^* \to \{0,1\}^*$ is a one-way function if there exists a negligible function v(k) and a probabilistic polynomial time algorithm \mathcal{A} such that if x' = A(f(x)), the probability that f(x) equals f(x') is equal to v(k) (i.e., negligible)
- e. A one-way function is a function that is hard to invert (that is, given f(x), it is hard to figure out x. A one-way permutation is a permutation that is also hard to invert. A permutation is bijective (that is, for sets X and Y, there is exactly one $x \in X$ for every $y \in Y$ such that f(x) = y, while a function is not bijective (it is only surjective or injective).
- f. If f() is a one-way function and G() is a pseudo-random number generator, then h(x) = f(G(x)) is also one-way. The contrapositive is: If h() is not one-way, then f() is not one-way or G() is not a pseudo-random number generator.
 - We suppose we are given an algorithm \mathcal{A} that can invert h(), that is on input y, \mathcal{A} will output x such that h(x) = y
 - We want to show that given such an \mathcal{A} , either we can build \mathcal{B} which can invert f() (that is, given input y, it will output x such that y = f(x)), or we can build \mathcal{B} which can distinguish the output of G() from random bits.
 - $c \leftarrow \mathcal{A}(f(x))$. If \mathcal{A} succeeds, then we can build a \mathcal{B} which will use \mathcal{A} to obtain x' such that f(x') = f(x).

```
\mathcal{B} will take as input x:

c \leftarrow \mathcal{A}(x)

So: x = f(G(c))

If x = f(a), then: f(a) = f(G(c))

a = g(c)

Output a
```

• If \mathcal{A} fails (or rather, succeeds with a negligible probability), then we can build a \mathcal{B} which will use \mathcal{A} to show that G is not a pseudorandom generator. That is, \mathcal{B} can distinguish between ${}_{D}PR$ and D_{Random} .

```
\mathcal B will take as input x=f(a) (where a is 2k random bits): c \leftarrow A(x) f(G(c)) \neq x f(G(c)) \neq f(a) a \neq G(c)
```

we know that a is random, and we have just shown that a is distinguishable from G(c). (note, here \neq means 'distinguishable')

• We have shown that if we assume that there exists an \mathcal{A} which tries to invert h, we can construct a \mathcal{B} which can either invert f, or show that the output of G is not random. Because we know that f is one-way and we know that G is pseudo-random, then our assumption that an \mathcal{A} exists is false, and h must be one-way.